
An Open-Source RISC-V Vector Math Library
Ping Tak Peter Tang

Riovs Inc., Santa Clara, CA 95954

Abstract—RISC-V is an open royalty-free instruction set ar-
chitecture (ISA) under the governance of RISC-V International.
The ISA consists of a base instruction set and many modular
extensions among which the vector extension that supports data
parallel execution is recently ratified. Supporting the goal of an
open ISA to accelerate innovation, we developed an open-source
double-precision vector math library as a highly relevant addition
to the high-performance computing (HPC) ecosystem. This paper
introduces the RISC-V vector ISA, some of those computational
instructions we found most useful, and the software structure of,
as well as the various numerical techniques employed to make
the library accurate and efficient.

I. INTRODUCTION

RISC-V is an open royalty-free instruction set architecture
(ISA) that was first developed at the University of California at
Berkeley in 2011 [1] (c.f. [2]). One distinguished feature is its
being modular and extensible. The base integer instruction set
RV32I was released in 2011. This was followed by a number
of extensions such as the single-precision and double-precision
floating-point extensions. Vendors can implement the base
ISA together with whichever additional extensions they deem
relevant. Furthermore, RISC-V envisions new ISA extensions
to be proposed by practitioners of various specialized areas.
In high-performance computing (HPC), SIMD instructions
in various architectures have proved successful in boosting
performance through data-parallel processing. Consequently,
RISC-V approved a vector “V” extension v1.0 [3].

Realizing RISC-V’s vision that open technology acceler-
ates innovation in computing requires a diverse and robust
ecosystem. To support the HPC ecosystem, we developed
an open-source vector math library1 that richly utilizes the
aforementioned “V” vector extension.

There are several purposes of our work. First and most
obviously, we aim to provide an accurate and good performing
open-source library as a common building block in HPC,
enriching the ecosystem and improving the chance of RISC-
V’s success. Since we target HPC, we focus on IEEE double
precision and defer work on other floating-point precisions.
Second, this library presents concrete use cases of the RISC-
V vector ISA as a validation of the ISA design. To this end,
for some of the functions in this library, we implemented
multiple versions using different algorithms thus exercising
different instructions combinations. Having different versions
is also helpful at this stage when different HPC-class hardware
implementations are yet to emerge. Last but not least, the code
contains extensive comments on the various numerically subtle
computations. The goal is to enable fellow travellers in the

1https://github.com/rivosinc/veclibm

ecosystem to more easily further contribute to this library as
well as constructing other numerical software for RISC-V.

In what follows, Section II discusses some related prior art
in math libraries. Section III introduces some key features
of the RISC-V vector ISA. Section IV describes our vector
math library: its software architecture and some key tech-
niques employed in the functions’ implementations. Section V
demonstrates concretely through selected functions how we
employ these techniques, followed by a summary of accuracy
measurements. We reflect on our experience with the RISC-V
vector ISA from this work and make some concluding remarks
in Section VI.

II. RELATED WORKS

The “libm” math library has been part of the infrastructure
available to standard programming environments. In the C
programming language for example, a program can access
these functions by the definitions in math.h and linking with
−lm. Since the first adoption the IEEE-754 standard in 1985
(the latest revision is in [4]), reliable floating-point arithmetic
has become the norm as practically all platforms conform to
the standard. As a result, libm libraries evolved to handle
IEEE special values such as NaN or Inf and endeavored to
deliver functions with quantified accuracy goals. In addition
to proprietary software each platform or vendor supplies to
its users, open-source libraries also started to emerge. One
such early example is fdlibm [5] which was developed and
freely distributed by Sun Microsystems, Inc. This library
handles IEEE exceptions faithfully. First, it returns appropriate
results and exception signals to inputs that warrant them:
for example, returning −Inf and raising the division-by-
zero signal for log(0.0). Second, it carefully avoids raising
exceptional signals spuriously. For example, the log function
of the largest finite input is a very moderate number; but it is
conceivable that a program can generate a spurious overflow
signal in handling an input number that large. The library
states that a few core functions such as exp or log are
provably accurate to within one unit of last place (ulp) [6] but
does not maintain this accuracy or makes any explicit claims
for most other functions, such as the hyperbolic or inverse
trigonometric functions. Glibc [7] contains an open-source
libm. The quality is less uniform as it is contains contributions
by different developers. For example, within the ieee754

directory of its math library in Glibc 2.26 includes some
correctly rounded functions contributed by IBM, some of the
less accurate functions from fdlibm, and some other functions
developed by Glibc itself. The OCML [8] library contains
complete source codes to a libm supporting LLVM. While

there are no accuracy claims, the double-precision library uses
extra-precision double-double [9] simulations generously and
is expected to be adequately accurate. This library handles
exceptions via post-processing: It first carries out computations
for all input arguments, and checks afterwards for exceptional
or extreme input values, revising when needed the previ-
ously computed results. Post-processing can raise spurious
exceptions. For example, exp(+Inf) should return +Inf
without exceptions. The general computation however usually
computes r = x − round int(x/log2) log(2) in exp(x). If
round int produces +Inf, then a spurious invalid operation
signal will be generated subtracting two +Infs. The libraries
discussed so far consist of scalar functions that generally take
and return a single floating-point number.

On computing platforms that support a SIMD ISA, vector
math libraries are often provided that take an array of floating-
point input arguments and return an array containing the
corresponding function values. Intel Vector Math Library [10]
is Intel SIMD specific (e.g. SSE, AVX256, AVX512) and
closed source, though parts of it are contributed to Glibc. The
Arm library in [11] is open source. It has a number of scalar
functions and also four double-precision vector functions: exp,
log, sin and cos, excluding the vector pow function as it calls
the scalar version within a loop. Vector Libm [12] contains 9
double-precision functions coded in a scalar fashion intended
to be automatically vectorized by compilers. This approach
trades ISA agnosticism with performance. Some of these
libraries have explicit accuracy claims and most are around 4
ulps. Comments within the source codes in [11] suggest their
accuracies are within 2 ulps. The open-source vector function
library SLEEF [13] is an excellent contribution. It contains
a rather complete collection of double-precision elementary
functions: the exp and log functions in three bases, expm1
and log1p and the power function pow; the three trigono-
metric functions and their inverses and the atan2 function;
the sin and cos functions and their inverses have the “pi”
versions in additional to the standard radian version; the three
hyperbolic functions and their inverses; the cube root function.
Most of these functions have a more accurate 1 ulp and a
relaxed 3.5 ulps versions. The stated accuracies were assessed
empirically. The accuracy level of the single-version functions
are unspecified. Similar to OCML, exceptional/extreme inputs
are post-processed and thus spurious exception signals can be
raised at times. SLEEF uses a set of library defined intrinsic
functions that serve as an abstraction layer. This allows it to
support different SIMD ISAs via appropriate implementations
of these intrinsic functions. This portability is highly valuable.
Nevertheless, one would expect some performance trade off
as it is difficult for a general abstraction to fully exploit
every single specific ISA. Indeed, SiFive reported this exact
experience when they ported the SLEEF library to their
platform [14]; and their platform specific library can better
utilize their hardware. That paper does not fully discuss the
status or availability of their library.

Our vector math library is RISC-V specific. The library
currently contains all the elementary functions included in

SLEEF, and additionally the “pi” version for tangent and its
inverse. Some functions have multiple algorithmic versions,
but are all assessed empirically to be within 1 ulp accurate.
We plan to apply rigorous error analysis in the future. Some
common special functions such as gamma, error, Gaussian
distribution are under development. It handles exceptional
and extreme inputs faithfully without generating spurious
exceptions. We expect the computing industry to embrace
the RISC-V open ISA and thus notwithstanding our library’s
single mindedness, it will serve many compute platforms.

III. RISC-V VECTOR ISA BASICS

A vector ISA specifies instructions that operate on vector
registers, each of which holds multiple elements. A single
issue of an instruction thus executes the same operation on
each of these multiple sets of operands, gaining the name
of single-instruction-multiple-data (SIMD) instructions. Vector
operations work perfectly for computational kernels that can
exploit data parallelism; adding two long vectors in computa-
tional linear algebra is the “Hello, World!” example of this.

Traditional SIMD ISA such as Intel’s AVX requires the
program to know explicitly the number L of elements that a
vector register holds. A SIMD implementation for an N -length
vector addition typically “strips” L elements off this vector
per iteration. Strip mining here typically requires two loops.
The first processes L elements per iteration. The second (often
called an epilogue) processes the remaining N%L elements in
a scalar fashion.

In contrast, RISC-V vector ISA is register-length agnostic
and has a feature that renders strip-mining epilogue unneces-
sary. RISC-V vector ISA defines 32 architectural vector regis-
ters but the size VLEN of these registers can be implementation
chosen as 2k bits provided that VLEN ≤ 216. VLEN needs to
be at least as big as ELEN, the maximum size in bits of a
vector element that any operation can produce or consume.
Moreover, some tool chain may impose other lower bounds:
LLVM requires that VLEN ≥ 128. As an example, if VLEN

is 512, then each physical vector register can hold 8 IEEE
double-precision elements.

The vector registers are general purpose, used for integer,
floating-point and logical (mask/predicate) variables. The size
of the elements together with the instruction unambiguously
determine how the bits of the elements inside the general-
purpose registers are to be interpreted. All vector instructions
can operate under masks. Going beyond the floating-point
vector instructions, there are vector instructions that operate
on fixed-point values which our work makes good use of (c.f.
Section IV-C4).

In addition to the physical registers, one can group multiple
(or even fractional) physical vector registers to form one
logical register. This is specified by the parameter LMUL. For
our work here, we only consider non-fractional LUML = 1, 2, 4
or 8. If VLEN is 512 and LMUL is 2, then each logical
vector register can hold 16 double-precision elements and
thus one single vector floating-point add instruction executes
16 additions. A same program can optimize its performance

1 // Adding two N-length vector X and Y
2 // Using C intrinsic with comments
3 n_remain = N;
4 for (; n_remain>0; n_remain-=v_ell) {
5 v_ell = __riscv_vsetvl_e64m2(n_remain);
6 // C intrinsic for the vsetvl instruction
7 // e64 means 64-bit element (FP64 e.g.)
8 // m2 means LMUL=2
9 // vsetvl sets the vl register to # active

10 // elements in the logical vector register
11 // and assigns that value to v_ell
12 vx = __riscv_vle64_v_f64m2(X,v_ell);
13 vy = __riscv_vle64_v_f64m2(Y,v_ell);
14 // load v_ell arguments into registers vx, vy
15 // starting from address X and Y.
16 // Note that the intrinsic function takes v_ell
17 // as an input and "resets" the vl register
18 // Compilers are expected to exploit knowledge
19 // of the vl register’s content and skip the reset
20 // whenever possible
21 ... process, store result, etc. ...
22 X += v_ell; Y += v_ell;
23 // v_ell is usually the number of elements that
24 // the logical register can hold
25 // at the last iteration v_ell becomes N%L
26 // if N is not a multiple of L
27 }

Listing 1. One loop for strip mining

on different hardware implementations by changing LMUL.
Note however, the number of logical registers available will
naturally be just 32/LMUL whenever LMUL > 1.

Two special registers are used to dynamically configure the
vector registers that greatly eases programming efforts: (1) the
vtype register specifies the bit width of each element (e.g.
32 for IEEE single-precision data or 32-bit integers) and the
register grouping parameter LMUL and (2) the vl register that
specifies the number of elements (starting at element 0) inside
the logical register to be operated on. Incidentally, the Cray-1
vector architecture also had a similar vl register. The ability
to operate on a top portion of elements eliminates the need
for strip-mining epilogues, as Listing 1 illustrates.

IV. RISC-V VECTOR MATH LIBRARY

We wrote our library in the C programming language.
The RISC-V vector instructions can be accessed in several
ways. At the lowest level, one can use inline assembly; at the
highest level, one can write standard scalar C code and rely on
vectorizing compilers. Clang (and GCC will soon) provides
access to the RISC-V Vector ISA through specific and also
overloaded intrinsic functions. We chose to use the latter as
they offer both direct access to the ISA as well as ease of
re-configuration. For example, the overloaded intrinsic
vsum = __riscv_vfadd(vx, vy, v_ell);

works for either IEEE binary16, binary32 or binary64 and
for any LMUL values. By using types defined in one header
file, we can easily use different LMUL settings for differ-
ent functions. All of these intrinsics start with the prefix
riscv and requires the active vector length parame-

ter (the v ell after vx and vy). For the rest of the pa-
per, we will omit both so to simplify our presentation.

1 #include "rvvlm.h"
2 #include FUNC_PRECISION_N_LMUL
3 #define FUNC_PARAM_1 func_value_1
4 #define FUNC_PARAM_2 func_value_2
5
6 #include function.inc.h

Listing 2. Organization of a function implementation

In this style, the most used intrinsics are the usual sus-
pects: vfclass, vfadd, vfsub, vfmadd, vfmacc, vfsgnj. The
vfclass instruction identities a floating-point as one of ten
classes and is used extensively to enable exception han-
dling detailed in Section IV-B. The multiply-add vfmadd

and multiply-accumulate vfmacc instructions have variants
that either negate the product, summand or the resulting
expression. The sign injection vfsgnj instruction has variants
of injecting a negated sign or xor-ing the operands’ sign bits.
For some functions, the instructions vfdiv, vfsqrt, vfrec7
are needed. The approximate reciprocal instruction vfrec7

provides a value that approximates 1/x to about 7 significant
bits and proves to be valuable (see details later). Finally, the
logical manipulations of mask (predicates) are also frequently
used. They include vmand, vmor, vmandn, vcpop which are
a and b, a or b, a and (negate b), and counting the number
of trues in a mask register. respectively. Finally, we note that
whenever one of the operands to a binary operator happens
to be a scalar and not a vector, it has to be the second one.
Thus for non-commutative operators such as subtraction and
division, there are the “reverse” forms vfrsub, vfrdiv.

Listing 2 shows the typical organization of a function. The
top-level include file rvvlm.h defines all the libm functions. It
also defines the choice of precision and LMUL value via defin-
ing FUNC PRECISION N LMUL to be the name of a specific
header file. That header file defines the appropriate typedef

for the function in question. At the bottom level, the header file
function.inc.h (e.g. expD.inc.h) implements the function
in question, but often with some conditional compilation as it
is common that a number of functions are implemented very
similarly except for some simple changes. Examples include
exp and exp2, or sin and sinpi. The conditional compilation
flags are set by those FUNC PARAM n prior to the lowest level
include file. These function specific parameters also control
which of the two APIs will be used for the function: the unit
stride API

void func(size_t n, const double *x, double *y);

or the general stride API

void func(size_t n, const double *x, size_t inc_x,
double *y, size_t inc_y);

Listing 3 shows the common structure of the implemented
functions. Steps 1 and 5 are straightforward load/store between
registers and memory. The strip mining is the same as de-
scribed earlier. We elaborate on the other steps.

1 ENSURE_RNE;
2 // macro; ensure round-to-nearest-even in effect
3 for (; n>0; n-=v_ell) { // strip mining
4 //1. Load input into vector register
5 //2. Filter and handle exceptions
6 //3. Compute for normal inputs
7 //4. Merge in exceptional results
8 //5. Store vector register to output
9 }

10 RESTORE_IF_NEEDED;
11 // macro; ensure original rounding mode in effect

Listing 3. Structure of a function implementation

A. Prevalent Rounding Mode

The rounding mode setting during function computation
is important. Many existing function libraries assume the
floating-point environment has the round-to-nearest-even mode
set. While this assumption is very likely valid, it is not
ensured. Unfortunately, for most if not all elementary function
implementations, computing in a different rounding mode can
result in losing almost all precision, not just a couple of
bits. This is because most implementations entail an argument
reduction process that typically look like

r = x− nearest int(x/p)× p

and expects the result r to fall into the interval [−p/2, p/2]. For
example, p = log(2) for the exponential function, and p = π
(or π/2) for the trigonometric functions. An approximating
polynomial that specializes on this interval is hard coded into
the implementation. The “nearest int” is typically a round-
to-integer instruction whose rounding mode is controlled by
the environment. All rounding modes except round-to-nearest
can lead to an r as large as p in magnitude, rendering the
approximating polynomial’s accuracy woefully inadequate. We
do not take a round-to-nearest mode for granted. Changing
the rounding mode setting in a floating-point environment
may lead to draining of the processing pipeline; but the cost
of reading the current setting is likely to be moderate. Our
macro ENSURE RNE reads the current rounding mode and only
change it if necessary. The macro to restore the rounding mode
does the reverse – and in general involves neither reading nor
writing the rounding mode setting. The usual cost involves
reading the current rounding mode and two non-taken actions,
which is amortized over the length of the input array.

B. Exceptions Handling

Consider Step 2 in Listing 3. Elementary functions that are
defined as mappings from floating-point numbers into floating-
point numbers need to handle many special situations that the
classical mathematical functions do not. Similar to fdlibm, we
handle exceptions faithfully. Moreover, in the context of vector
math libraries, we strive to minimize branching and masking.

1) Branch and Masked Operations Avoidance: Generally
one expects that none of the elements within a vector register
triggers an exception. The approach taken here is to quickly

recognize this situation and bypass exception handling imme-
diately. The vfclass instruction which returns a 10-bit one-
hot-encoding of 10 classes for floating-point numbers greatly
facilitates this approach. Exceptional arguments often fall ex-
actly into several of these classes. Take the logarithm function
for example: the exceptional arguments are NaN (signaling and
quiet), ±Inf, ±0, and strictly negative finite values. Moreover,
a positive subnormal number is best normalized first for many
common algorithms for this function. In one-hot-encoding,
these arguments correspond to 0X3BF. Hence an argument
is exceptional if and(class, 0x3BF) > 0 where class is the
result of applying the vfclass to a vector register of input
arguments. It is also common to have special handling of
small-magnitude arguments so as to avoid generating spurious
underflow signals. For example, computing x×one ov ln2 is
common in implementing exp(x); but this multiplication can
trigger an unwarranted underflow signal if |x| is very small.

The previous discussions show that a mask is naturally
generated pinpointing exceptional input arguments. Using the
population count instruction vcpop on that mask shows how
many of the arguments within a vector register is exceptional.
In the rare situation that these are present, we first generate
the required results and their associated exception signals (see
below). At the very end of the function computation, it suffices
to merge – Step 4 of Listing 3 – these exceptional results with
the normal one computed from non-exceptional inputs.

We also use the uniform approach that replaces these
exceptional arguments with some “safe” values so that nor-
mal computation can be applied to the entire input vector
register without triggering unwarranted numerical exceptions.
The values 0 and 1 are common choices. Avoiding masked
computation is of value as only one register v0 is used for
this purpose, and is hence a precious resource.

2) Exception Generation: For exceptional inputs we pro-
duce function-specific appropriate result values and exception
signals. In general this can be effected by some simple
arithmetic instructions. The addition vx+ vx for example on
input NaN produces the canonical NaN result but also generates
the invalid operation signal if a signaling NaN is present.
The approximate reciprocal instruction vfrec(vx) generates
a divide-by-zero exception on a ±0 input. Hence for the
log(x) function for example, the operation vfrec7(vx) + vx

produces the desired result and exception signals whenever
input arguments are ±0, NaN,+Inf.

C. Accurate Function Computations
Algorithms and implementations for elementary functions

are generally well understood [15] and many take the 3-
step approach of reduction, approximation and reconstruction,
perfectly illustrated by computing exp(x).

r ≈ x− n log(2); reduction
p ≈ exp(r); approximation
ex ≈ 2np reconstruction

Nevertheless, it is non-trivial to implement the above so that
the delivered result is within 1 ulp in double precision to the

Operations # ops, an op is +,−,× or fmadd
d(dd) + d(dd) → dd 6, 7, 8
d(dd)× d(dd) → dd 2, 3, 4
d(dd)/d(dd) → dd 3, 4, 5 plus 1 div√

d(dd) → dd 3, 4 plus 1 sqrt and 1 div

TABLE I
COST IN ORDER OF 0, 1, OR 2 INPUTS ARE DD

exact ex. In general some steps must use precision higher than
double precision. For example one must make use of a log(2)
value to at least 11 more bits. For most hardware, double is
the widest supported precision. Consequently, variables that
require extra precision can only be represented in multiple
double-precision variables such as a pair – commonly referred
to as a double-double. One can see double-double arithmetic
operations in double-precision function implementations at
where precision is more critical, which is typically near the
end of the entire computation.

A double-double (dd) variable (X,x) is a “head-tail” pair
of double (d) where |x| ≪ |X|. Arithmetic involving dd
variables is well understood (see [9] e.g.) and its cost is high
as summarized in Table I.

However, a doubling of precision is not needed but a mere
handful of extra bits of precision, like 6 or 7, suffices to help
deliver the final result to within 1 ulp of error. We therefore
mostly use specialized extra-precision computation in place
of general dd arithmetic. Some of these computations rely
on the vector ISA while some other exploit the special form
of the function in question. Here are some commonly used
algorithms.

1) Extra-precision Sum: The need for an extra-precise sum
A + B of two floating-point variables arise very often. A
number of double-double techniques are well known (see [16]
for example). The general algorithm that is often called Knuth-
2-sum requires 6 operations. In the case when |A| ≥ |B|, the
so-called fast2sum algorithm requires only 3 operations:
S = vfadd(A,B); s = vfadd(vfsub(A,S),B);

We also make use of a situation when both summands are non-
negative, which save 1 operation from a general two-sum:
S = vfadd(A,B); X = vfmax(A,B); Y = vfmin(A,B);
s = vfadd(vfsub(S,X),Y);

2) Extra-precision FMA: The fused multiply-add instruc-
tion deliver A + BC with 1 rounding for floating-point
quantities A, B and C. In a number of situations, we need to
obtain this expression to extra precision. For libm functions,
it is not uncommon that |A| ≥ |BC|. If this is the case, the
3-instruction sequence suffices:
S = vfmadd(B,C,A); s = vfmadd(B,C,vfsub(A,S));

The mathematical sum S+s approximates A+BC to double-
double precision because 1/2 ≤ S/A ≤ 2, making the
subtraction A−S exact [17]. Hence S is the correctly rounded
value of A + BC and s is the correctly rounded value of
the exact trailing value A + BC − S. In expm1(x), log(x)
and cos(x) the leading terms of the core approximation are

x + x2/2, x − x2/2 and 1 − x2/2, which all satisfy the
condition here as |x| < 1 (after argument reduction) and that
x2/2 = x× (x/2) where the latter term is computed exactly.

3) Extra-precision Square Root: Extra-precision square
root can be computed based on the observation that if R =√
X(1 − δ) where |δ| bounded by machine epsilon, then Rδ

would be a good compensatory term; and (X−R2)/(2X) ≈ δ,
hence the cost tabulated in Table I. Using the approximate
reciprocal instruction vfrec7 for 1/X essentially provide a 7-
bit approximation of δ, suffices for an extra-precision square
root for the purpose of accurate function computation. The
code sequence for extra-precise square root of a dd variable
(X,x) is as follows.
R = vfsqrt(X);
delta = vfmul(vfadd(vfmadd(-R,R,X),x),vfrec7(X))
r = vfmul(vfmul(delta,R),0.5)

It substitutes the cost of the division in Table I with vfrec7

which in all likelihood will be a fast instruction.
4) Fixed-Point Computations: Consider the common step

in Horner’s recurrence for polynomial evaluation: r × p + cj
where p is the partially computed polynomial. Because the
vector fused-multiply-add cannot take a scalar input for the
addend, we need two vector instructions to realize r× p+ cj
in floating point. One needs to “splat” the scalar constant
cj into a vector register, followed by the fused multiply-
add instruction. Nevertheless, to deliver the final result of a
function computation to within 1 ulp of error, the last few
operations within a function computation typically requires
higher-than-native precision.

Consider the use of “double-double” in the tail end of
Horner’s recurrence r× p+ cj . In this case, both p and r are
in double-double while the coefficients cj is a simple double-
precision value. According to Table I, the multiplication needs
4 instructions. If we assume the coefficient cj is dominant, we
can save 3 instructions from the double-double addition (c.f.
previous discussion on fast2sum), resulting in 4 instructions.
Thus the recurrence step requires 8 instruction in general. One
usually computes the beginning part of the Horner’s recurrence
in plain double precision before switching to double-double.
At the first step of the transition, p is a simple double-precision
variable, whose product with a double-double takes only 3
instructions, not 4. Therefore if the double-double portion
involve k coefficients, it will take 8k − 1 instructions. We
can possibly do much better using the fixed-point support in
RISC-V vector ISA.

RISC-V vector ISA supports fixed-point computations,
which is a distinctive feature. Fixed-point instructions interpret
64-bit inputs to be a 2’s complement integral value multiplied
by the factor 2−63. Hence all input and output values are
of the form 2−63I where I is an integer −263 ≤ I < 263.
The saturation multiplication vsmul operates on 2−63Ix and
2−63Iy . It essentially multiplies the two integers Ix and Iy
followed by right shifting 63 bits and round according to a
rounding setting. Out-of-bound results are saturated. Corre-
sponding saturated addition/subtraction instructions are also
defined in the ISA; a fused multiply-add instruction however

is not available. Thus fixed-point arithmetic can carry as much
as 63 bits of precision when quantities are scaled optimally. In
practice, if we have two real quantities a and b such that their
round-to-integer value A = 263a and B = 263b fall within the
range of 64-bit 2’s complement integer, then the result of a
saturated multiplication of A and B corresponds to the product
263a× b in the absence of saturation (overflow).

Consider the Horner’s recurrence r × p + cj . If R,P and
Cj are the fixed-point analogues for the three variables, they
can be more than 60-bit precise when scaled well. Moreover,
if P and Cj are of the same scale and R’s scale factor is
263, then it takes also only two instructions for this common
step. Even when R’s scale factor is not 263, three instructions
suffice. Specifically, supposed the last k terms of a Horner’s
recurrence needs to be done with extra precision. Converting
a floating-point value to fixed points takes two instruction
in general: multiplication with a scale factor 2q followed by
floating point to integer conversion. The other direction also
takes 2 instruction, applied reversely. The conversion overhead
in completing a Horner’s recurrence in fixed-point is thus 6
instructions: converting p and r to fixed point and the final
result back to floating point. Hence if R carries a scale factor
of 263, the cost of completing a Horner’s recurrence in fixed-
point with k coefficients is 2k+6; otherwise it will be 3k+6.
For instance, if k = 4, instructions needed for extra-precision
evaluation in double-double is 8k − 1 = 31 while the two
scenarios of fixed-point arithmetic are 2k + 6 = 14 and
3k + 6 = 18.

Compared to a purely floating-point double-double ap-
proach, using a mixture of floating-point and fixed-point
arithmetic deliver equally precise result in fewer instructions,
even taking into account the needed floating-fixed point con-
versions. Indeed, the result can be even more precise simply
because we can afford to do more extra-precise computations.

V. ILLUSTRATIVE EXAMPLES

We present here examples in our library that utilize some
of the techniques in the previous section.

A. Common Structure of Exception Handling

The power function pow(x, y) = xy has a large number
of exceptional cases [18]. Luckily, the condition that one of
x or y belongs to this group of 6 special values ±0, ±INF,
sNaN and qNaN include most of the exceptional cases. When
neither x nor y is one of these 6 values, we can compute |x|y
numerically followed by a simple check for x < 0 and handle
that appropriately.

As Section IV-B suggests, we use the vfclass instruction
and mask the result with the “stencil” 0x399. Listing 4 is the
illustrative snippet. It is reasonable to assume that exceptional
cases are rare in practice and thus the performance inside
the handling is not critical. We continue using the vfclass

and various vector instructions inside the exception handling,
considering each of the three mutually exclusive cases of both
x and y being special, or only one is.

1 x_class = vand(vfclass(vx), 0x399);
2 y_class = vand(vfclass(vy), 0x399);
3 special = vmor(vmsgt(x_class,0), vmsgt(y_class,0));
4 if (vcpop(special) > 0) {
5 // performance non-critical
6 // create vz_special as the result and generate

appropriate signals
7 // substitue exceptional argument with safe

values
8 vx = vmerge(vx, 1.0, special); vy = vmerge(vy,

0.0, special);
9 }

10 // All values in vx and vy are now safe to compute
11 // compute results vz for these safe values
12 vz = vmerge(vz, vz_special, special)

Listing 4. Exception Handling

B. Extra-precision Simulation in Floating Point

We illustrate some instances of situation-specific extra pre-
cision simulation in floating-point arithmetic. The hyperbolic
functions cosh(x) and sinh(x) are defined as (ex ± e−x)/2.
Straightforward use of these formula requires essentially ob-
taining an extra precise ex delivered in double-double format.
This is followed by a double-double reciprocal to get e−x,
and a subsequent double-double addition/subtraction. A fair
number of double-double basic operations are involved in all,
and that all the steps are essentially sequentially dependent. We
use an alternative approach that reuses common expressions
between the computation of ex and e−x and specialized extra-
precise simulation. An expensive division and a few data
dependencies are eliminated.

Since cosh(−x) = cosh(x) and sinh(−x) = − sinh(x), it
suffices to focus on x ≥ 0. A usual approach in computing ex

first reduces the argument x to r ∈ [− log 2/2, log 2/2] via x =
n log 2 + r where n is an integer. Thus cosh(x) and sinh(x)
are given by 2n−1(er ± se−r) where s = 2−2n. Using the
Remez algorithm [19], we pick an approximating polynomial
to er with the leading terms 1 + r + r2/2:

er ≈ 1 + r + r2/2 + r3(p(r2) + rq(r2)).

Here p(r2) and rq(r2) are the even and odd parts on the
polynomial starting from the third degree. Hence

er ≈ 1 +

(
r +

r2

2

)
+ r3(p(r2) + rq(r2)),

e−r ≈ 1−
(
r − r2

2

)
− r3(p(r2)− rq(r2)).

The value before the final scaling of 2n−1 is

[(1± s)] +

[(
r +

r2

2

)
∓ s

(
r − r2

2

)]
+ U,

where

U = r3
[
(p(r2) + rq(r2))± s(p(r2)− rq(r2))

]
.

Because |r| ≥ |r2/2| as |r| < 1, we apply the 3-instruction
sequence in IV-C to get r ± r2/2 accurately as (Bpos, bpos)
and (Bneg, bneg). We compute the expressions Bpos ± sBneg

1 #define FAST2SUM(X,Y,Z,z) \
2 Z = vfadd(X,Y); z = vfadd(vfsub(X,Z),Y);
3 #define FAST2FMA(A,B,C,Z,z) \
4 Z = vfmadd(A,B,C); z = vfmadd(A,B,vfsub(C,Z));
5 some code, obtained r, s, U,
6 r_prime = vfmul(r, 0.5);
7 FAST2SUM(1.0, -s, A, a); // use s for cosh
8 FAST2FMA(r, r_prime, r, B_pos, b_pos);
9 FAST2FMA(r, -r_prime, r, B_neg, b_neg);

10 FAST2FMA(B_neg, -s, B_pos, B, b); // use s for cosh
11 // P = U + (a + (b + (b_pos - s b_neg)))
12 Z = vfadd(A, vfadd(B, P));
13 // return 2ˆ(n-1) * Z

Listing 5. cosh and sinh

extra precisely also with the 3-instruction sequence because
|Bpos| ≥ s|Bneg|. This is clear if s = 2−2n ≤ 1/2 (note that
n ≥ 0). If s = 1, this means that n = 0 and hence r = x ≥ 0,
implying |Bpos| ≥ |Bneg|. Listing 5 illustrates this.

C. Fixed-Point Computations

The inverse tangent function lends itself to computation
almost entirely in fixed-point arithmetic. Since arctan(−x) =
− arctan(x), a standard algorithm works with |x| and restores
the sign near the end of the task. As

arctan(x) = π/2− arctan(1/x) for x > 1,

the main task is to compute the function arctan(t) on [0, 1]
which is typically approximated by an odd polynomial:

arctan(t) ≈ t+ ts

L∑
j=0

pjs
j , s = t2, 0 ≤ t ≤ 1.

The variable t is either x or 1/x. The coefficients pj are ap-
proximately −1/3, 1/5,−1/7, . . ., which decay rather slowly.
Together with the fact that t can be as large as 1, one needs
L = 19 for a double-precision atan function. Furthermore,
when computed in floating-point arithmetic, extra-precise sim-
ulation is needed for the Horner’s recurrence that iterates from
j = 19 downwards as soon as j reaches 3.

Alternatively, we note that as long as sp(s) is computed
with a small absolute error ∆, this error is propagated as
t∆ in t + t(sp(s) + ∆). Since the final result’s magnitude
is never smaller than t − t3/3 (when x ≤ 1) or π/4 (when
x > 1), an absolute error of t∆ is never bigger than |∆|
in relative error. This makes computing sp(s) in fixed-point
arithmetic with a scale factor of 263 ideally suited for the
task of implementing the atan function. As noted previously,
scaling both the coefficients and the variable with 263 results
in an efficient two-instruction per Horner’s recurrence step
computation. Note however that t can be as large as 1 and
thus a scale of 263 can result in overflow for both s and
s2. The term s2 is needed if we want to introduce some
parallelism by computing say the odd and even part of the
polynomial

∑19
j=0 pjs

j in parallel. We exploit the fact that
−s and −s2 can both be scaled by 263 without overflow
and thus apply the “negated” Horner’s recurrence step of

1 ... exception filtering, create t to be x or 1/x
2 // (t, dt) is the double-double of 2ˆ62 x or 2ˆ62 /

x
3 T_62 = vadd(vfcvt_x(t), vfcvt_x(dt));
4 // (t,dt) in fixed-point, scale 2ˆ62
5 nT_63 = vsll(vfrsub(T_62,0),1);
6 // -(t,dt) in fixed-point, scale 2ˆ63
7 nS_62 = vsmul(T_62,nT_63);
8 // -(t,dt)ˆ2 in fixed-point, scale 2ˆ62
9 nS_63 = vsll(nS_62, 1);

10 // -(t,dt)ˆ2 in scale 2ˆ63
11 // we can now use the negated Horner’s recurrence to
12 // compute P0 + S*(P1 + S*(P2 + ... + S*P19))
13 Poly = vrsub(vsmul(nS_63,P19),P18);
14 Poly = vrsub(vsmul(nS_63,Poly),P17);
15 compute recurrence until P0 ...

Listing 6. atan

1 #define DD(X,x_head,x_tail) x_head = vfcvt_f(X); \
2 x_tail = vfcvt_f(vsub(X,vfcvt_x(x_head)))
3 #define DIV2_7(A,a,B,b,Q,q) Q = vfdiv(A,B); \
4 resid = fadd(fmadd(-Q,b,fmadd(-Q,B,A)),a); \
5 q = vfmul(resid,vfrec7(B))
6 ... beginning computation: exception handling, etc
7 // ... at this point all elements in vx is in [0, 1)
8 one_p_x = vfadd(vx,1.0); one_m_x = vfrsub(vx,1.0);
9 ratio = vfmul(one_p_x,vfrec7(one_m_x));

10 n = vsub(vsrl(vadd(vsrl(FasU(vx),44),0x96),8),1023);
11 X = fcvt_x(vfmul(vx,0x1.0p60));
12 A = vadd(X,One); B = vsll(vrsub(X,One),n);
13 Numer = vsub(A,B); Denom = vadd(A,B);
14 DD(Numer, E, e); DD(Denom, F, f);
15 DIV2_7(E,e,F,f,r_hi,r_lo); r = vfadd(r_hi,r_lo);
16 // ...compute n*log(2)+r_hi+r_lo+rˆ3*poly(rˆ2)
17 // ...with floating-point technique to obtain
18 // ...n*log(2)+r_hi as double-double

Listing 7. atanh

P = −(X × P) + Pj . Listing 6 shows the scaling and the
negated Horner’s recurrence.

D. Mixed Floating-Point Fixed-Point Computation

Section IV-C4 presented a common scenario where fixed-
point arithmetic can be used in the ending stage of a com-
putation in lieu of double-double simulation. The inverse hy-
perbolic tangent function arctanh(x) is an example where the
beginning, rather than the ending, stage needs extra precision
that can be provided by fixed-point arithmetic.

The arctanh function can be defined as:

arctanh(x) =
1

2
log

(
1 + x

1− x

)
.

Common implementations essentially compute 1 + x, 1 − x
and (1+x)/(1−x) in double-double arithmetic followed by a
special logarithm function implementation that accepts double-
double input. Inside this logarithm implementation, further
double-double operations are needed: Typically, an input y
to the logarithm function is scaled by a factor of 2−n so that
2−ny = r ∈ [1/

√
2,
√
2]. At this point,

log(y) = 2 arctanh

(
y − 1

y + 1

)

is approximated by an odd polynomial in r = (y− 1)/(y+1)
which in turn requires double-double computation of y − 1,
y + 1 and (y − 1)/(y + 1).

We simplify the implementation for arctanh as follows.
First, we approximate (1 + x)/(1 − x) to about 7 bits using
the vfrec7 instruction. This value allows us to obtain a scale
factor s = 2−n so that s(1 + x)/(1 − x) lies in [α/2, α],
α = 1.4252. Thus

arctanh(x) = (n/2) log(2) + (1/2) log(s(1 + x)/(1− x)).

Now,
1

2
log

(
s
1 + x

1− x

)
= arctanh

(
(1 + x)− (1− x)/s

(1 + x) + (1− x)/s

)
.

The numerator and denominator are easily computed in fixed
point with a scale factor of 260 without ever overflowing.
After both fixed-point values are computed, we convert them
back to double-double format and compute one double-double
division. Note that the numerator and denominator in fixed
point are error free as long as x ≥ 2−8. If x < 2−8, the
absolute error in the fixed-point numerator constitutes too
large a error relative to x; but in this case we use x itself
rather than the quotient as the argument to that core arctanh
approximating polynomial. Listing 7 is the illustration.

1) Accuracy Measurements: We built our C library using
LLVM clang and ran tests with the emulator QEMU, which
also provides a long-double (112 mantissa bits) libm against
which our accuracy measurement is performed. Each function
F is tested on tens of millions of arguments on meaningfully
selected regions, using the long-double version f as reference.
For example, the exp function is tested at where it nearly over
or underflows; the expm1 and log1p functions are tested with
tiny arguments; the pow function is tested where xy almost
over or underflow, including when log(x) is close to zero.
Table II tabulates the maximum observed error in ulp. For
functions with multiple versions, we report here on the one
that we deemed to be a reasonable choice; but all versions
have accuracy to be within 1 ulp of the correct answer. For
the exponential functions, it is well understood that when the
result underflows, the error could be as large as 0.5 ulp plus
half of the error without underflow (see [20] for example).
The main reason is that the scaling operation of 2n × y for
a floating-point value y is no longer error free. We deem the
cost to avoid this extra error too high for the marginal benefits
expected.

VI. FINAL THOUGHTS

We developed an open-source double-precision vector math
library specifically for RISC-V, which is a first to the best
of our knowledge. In reflection, there are some “we really
wish we had” instructions or features: some of those low-
level IEEE recommended functions such as logb or scalb;
the addend of FMA can be a scalar; fused-multiply-add
and sign manipulation for fixed point; static rounding mode
instructions for integer/floating-point conversions and fixed-
point arithmetic. Nevertheless, we found overall that the RISC-
V vector ISA is well designed and greatly facilitated our work.

Library Functions Maximum Deviation in ulps
exp exp2 exp10 expm1 0.56 0.56 0.75 0.77

when result underflows 0.77 0.77 0.82 N/A
log log2 log10 log1p 0.55 0.57 0.56 0.66
pow cbrt 0.55 0.52
sin sinpi cos cospi 0.79 0.76 0.76 0.77
tan tanpi 0.62 0.61
sinh cosh tanh 0.67 0.59 0.76
asin asinpi acos acospi 0.66 0.71 0.64 0.65
atan atanpi atan2 atan2pi 0.55 0.55 0.55 0.55
atan2pi underflows 0.75
asinh acosh atanh 0.55 0.56 0.54

TABLE II
ERROR: |(F(x)− f(x))/ulp(f(x))|, f IS THE LONG-DOUBLE FUNCTION.

The author thanks Andrew de los Reyes, Keeran Rothenfusser,
Brendan Sweeney, Michael Wan and Liang-Kai Wang for
support and valuable comments.

REFERENCES

[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V
instruction set manual, volume 1: Base user-level ISA,” University of
California, Berkeley, Tech. Rep. UCB/EECS-2011-62, May 2011.

[2] K. Asanovic and D. A. Patterson, “Instruction sets should be free:
The case for RISC-V,” University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146, 2014.

[3] The RISC-V International, 2023. [Online]. Available:
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions

[4] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019 (Re-
vision of IEEE 754-2008), pp. 1–84, 2019.

[5] FDLIBM: Freely Distributed LIBM, Sun Microsystems Inc., 2010.
[Online]. Available: https://www.netlib.org/fdlibm/

[6] J.-M. Muller, N. Brunie, F. de Dinechine, C.-P. Jeannerod, M. Joldes,
V. Lefevre, G. Melquiond, N. Revol, and S. Torres, Handbook of
floating-point arithmetic. BIRKHAUSER, 2019.

[7] GNU Project, The Free Software Foundation, 2018. [Online]. Available:
https://www.gnu.org/software/libc/

[8] ROCm, “ROCM/ROCM-device-libs: ROCM device libraries.” [Online].
Available: https://github.com/ROCm/ROCm-Device-Libs

[9] M. M. Joldes, J.-M. Muller, and V. Popescu, “Tight and rigorous
error bounds for basic building blocks of double-word arithmetic,”
ACM Transactions on Mathematical Software, vol. 44, pp. 1–27, 2017.
[Online]. Available: https://hal.science/hal-01351529v3/document

[10] “Intel MKL,” Jan 2024. [Online]. Available:
https://en.wikipedia.org/wiki/Math Kernel Library

[11] [Online]. Available: https://github.com/ARM-software/optimized-
routines/tree/master/math/aarch64

[12] C. Lauter, “A new open-source SIMD vector libm fully implemented
with high-level scalar C,” in Asilomar Conference on Signals, Systems
and Computers, 11 2016, pp. 407–411.

[13] N. Shibata and F. Petrogalli, “Sleef: A portable vectorized library of C
standard mathematical functions,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 6, p. 1316–1327, 2020.

[14] E. Bavier, N. Knight, H. de Lassus Saint-Genies, and E. Love, “Vec-
torized nonlinear functions with the RISC-V vector extension,” in
Proceedings of IEEE Symposium on Computer Arithmetic, 2023.

[15] J.-M. Muller, Elementary functions: Algorithms and implementation.
Birkhauser, 1997.

[16] P. Kornerup, V. Lefévre, N. Louvet, and J.-M. Muller, “On the compu-
tationof correctly-rounded sums,” INRIA, Tech. Rep. RR-7262, 2010.

[17] P. H. Sterbenz, Floating-point computation. Prentice Hall, 1974.
[18] [Online]. Available: https://en.cppreference.com/w/cpp/numeric/math/pow
[19] W. Fraser, “A survey of methods of computing minimax and near-

minimax polynomial approximations for functions of a single indepen-
dent variable,” Journal of the ACM, vol. 12, no. 3, pp. 295–314, 1965.

[20] P. T. P. Tang, “Table-driven implementation of the exponential function
in IEEE floating-point arithmetic,” ACM Transactions on Mathematical
Software, vol. 15, no. 2, p. 144–157, 1989.

